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The thermodynamics of irreversible processes is normally limited to processes that can 
be adequately described by linear constitutive relations, like those of Fourier and 
Newton in a simple gas. In this paper we use thermodynamic arguments to derive the 
(nonlinear) Burnett equations for a monatomic gas, thus avoiding the complicated 
kinetic theory by which the equations were discovered and which somewhat obscures 
the origin of the various terms in the equations. Expressions are given for the entropy, 
its flux and its production rate correct to second-order jn Knudsen number. The theory 
invoIves five phenomenological parameters, and as there are eleven coefficients in the 
second-order terms of Burnett's equations, we are able to deduce several necessary 
constraints between these coefficients. Compact forms for the equations are found that 
clarify their physical significance. The general method we have developed is applicable 
to media other than simple gases. 

In a final section we use our theory of Burnett's equations to draw some general 
conclusions concerning the second law of thermodynamics. It is shown that the 
Clausius-Duhem inequality holds only for the linear theory of constitutive relations; 
and that axiomatic generalizations of the inequality to nonlinear processes - common 
in continuum mechanics - fail because the vital distinction between reversible and 
irreversible processes is not made. 

1. Linear constitutive relations 

x1 and the heat flux vector q1 are given by 
I n  a monatomic gas the classical linear constitutive relations for the viscous stress 

(1.11 1 
x --2p&, ql=--KTg (eEVv, 0 0  g=VT/T) 
1 -  

where 6 = $(e+e)-+e"I (e = vv, e" = I :VV = V . V )  

is the deviator of the velocity gradient tensor, Tg is the temperature gradient, p is the 
shear viscosity and K is the thermal conductivity. The subscript ' 1 ' in (1.1) denotes a 
term O(E) ,  where e is the Knudsen number, i.e. the ratio of a molecular mean free time 
to a macroscopic scale time (or a similar ratio of length scales). Certain variables? will 
be expanded in a Knudsen number series, typically 

9 = 90+91+92+*-* (9, = O(en))* 

f Since dissipation is the transfer of energy from macroscopic to microscopic length scales, 
E is the natural expansion parameter for all those functions whose values are determined by 
dissipation. 
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For example, the pressure tensor is 

p = pO+n1+~2+ ..., po = pl, x1 = -2$, ... ( p  = RpT), (1.2) 

wherep is the thermodynamic pressure and I the unit tensor. We shall also employ the 
classical relations 

K = YRp, prl = p = aT” (a,  d are.constants), (1.3) 

where 71 is the microscopic free time associated with molecular momentum transfer. 

(1.4) 

Let u = #p /p  denote the internal epecific energy, then the zero-order entropy 

so = $RIn (p/pg) + const. = - Rln (p/(RZ’)%) + const., 

satisfies the Gibbs relation 

TDs, = Du+pDp-l 

D being the material time derivative.t The total entropy, s = so + s1 + s2 + . . . , must 
satisfy the well-known stability conditions - so < 0.: Now s1 must be linear in x1 and q,. 
Continuity of the space derivatives of sl, expected on physical grounds, rules out 
dependence on Iql and (q l ( ,  and therefore s1 may have either sign. We conclude that 
for thermodynamic stability it must vanish. Hence 

s = so+s2+ ...) s2 < 0. (1.6) 

Of course this argument would fail in any region where Is1( < 1 . ~ ~ 1 ,  but later we shall 
find that s2 depends only on the products x l :  7c1 and ql. q,, so that, if s1 did exist, it 
would have the unphysical property of doing so only for gradients g and g large enough 
to prevent Is1/ exceeding Is2J. Notice that (1.6) means that the error term in (1.5) is 
O(e2) ,  and not O(6) as might be expected, This is why ‘local thermodynamic equilib- 
rium ’ is usually a successful hypothesis. 

It is generally true (e.g. see Woods 1975, p. 148) that 

p D u + p : V V + V . q - $  = 0, 

or (pDu + p v .  v )  + (nl:& + v. q, - @) + (‘IF2:; + v.  9,) + o(8) = 0, (1.7) 

Dp+pV.v = 0, (1.8) 

where $ is the radiant heat density. By (1.5), (1.7) correct to O(E) ,  and continuity, viz. 

we find pTDs, = --.rel: g - V . q , + $ .  

As g = OT/T this may bc written 

pTDs0 = -nl: g - q l . g + V .  J,1+$, (1.9) 

where 581 = Ql/T (1.10) 

is the first-order entropy flux. For a monatomic gas x has zero trace, i.e. x = A, SO that 
n: e = A :  b, which explains the appearance of the deviator 4 in (1.7). 

t The arguments in this section and in 8 5 can be made more precise by also expanding D in 

$ Often ignored in axiomatic continuum mechanics, see 3 7. 
a Knudsen number aeries; see appendix A. 
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Let c = c1 + c, + . . . be the entropy created per unit volume and J, = J,, + J,, + . . . 
be the entropy flux; then ent.ropy balance a t  a point P(r, t )  requires that 

CT = p D s + V . J , - $ / T ,  

0-1 = p Ds, + V . J,, - $IT + 0(e2). 
and in particular that 

(1.11) 

(1.12) 

From (1.9) and (1.12) we have for the first-order 'dissipation ' 

Tu1 = - R ~ :  6-q1.g 3 0, (1.13) 

where the added inequality - often termed the ' CIausius-Duhem inequality ' -is a 
local form of the second law of thermodynamics. And the first-order theory is com- 
pleted by noting that, for an isotropic medium, (1.13) leads to the linear constitutive 
relations (1.1).  This approach is elaborated in de Groot & Mazur ( 1  962) and in Woods 
(1975) for more general fluids, including mixtures and plasmas. 

Our present task is to generalize the standard theory to the nonlinear constitutive 
relations for a monatomic gas first given by Burnett ( 1  935). Burnett's theory is based 
on the Chapman-Enskog series (in powers of 8 )  treatment of Boltzmann's kinetic 
equation. It yields values for x = x1 + 7c2, q = q1 + q,, where the eleven O(e2) terms in 
x2 and q, are quadratic in 6 and VT and linear in V . 6 ,  D&, F T  and D(VT). The 
coefficients of these terms are proportional to p 2 / p  = prl = prq, r1 being the time 
defined in ( 1 . 3 b ) .  

While the kinetic theory gives precise values for the eleven Burnett coefficients, our 
thermodynamic approach requires five phenomenological coefficients, although, by 
tracing the physical origins of the various terms, we are able to give estimates for these 
numbers very close to their true values. From our coefficients we have deduced certain 
necessary relations between the Burnett coefficients, akin to the so-calledt Onsager 
relations of the linear theory, although with quite different physical origin. Another 
important consequence of our new derivation of the Burnett equations is a clear 
physical interpretation of the various terms, which has been lacking hitherto (see 
Woods 1979). And our method, being simpler and in some aspects more general than 
the kinetic theory approach, is capable of various other applications. 

2. The Burnett constitutive relations 
These relations are usually expressed in the forms (Chapman & Cowling 1970) 

R" R" 

P 

- 
a,%+ w2(D6 - 2eY6) + w3 R&T + w 4 -  VpVT + a,- T VT VT + w6").I 

T o  
P 

q2 = prl R e18VT + 6,(DVT - e.VT) + 0,- e .Vp + 8,TV .& + O6g .VT 

where for the special case of Maxwellian molecules 
(2.1) 

( 

w - 6 z - d ) ,  w, = 2, w3 = 3)  w4 = 0, W6 = 36, 'IDs = 8, 1 - 3 ( 2  

6 1 - 1 6  - x ( 2 - 4 ,  7 0, = y, 63 = - 3 ,  e4 = 3, 6, = 3 ( y + 6 ) .  
} (2.2) 

In  the derivation of (2.1) it is assumed that the radiant heating $ is zero. 
t For a critique of the reciprocal relations see Woods (1975, chapter 7). 

8-2 



228 L. G.  Woods 

The form of these equations is rather uninstructive concerning the physical origin 
ofthe various terms, and we shall now group these terms into a more coherent pattern. 
By ( l . l ) ,  ( 1 .8 )  and u = $RT, equation (1 .7) ,  with zero @, can be written 

(2 .3)  ) 
0 0  1 

( 3P 

1 
-DT = - 3 V . v + 2 5  
T 5 = g~,e:e--V.q, = O(s) . 

Hence (1 .8 ) ,  ( 2 . 3 )  andp  = RpT yield 

(2 .4 )  
1 5 
- D p  = - ~ V . V + O ( C )  = - D T + O ( s ) ,  
P 2T 

i.e. pT-8 = constant + O(C) a t  a fluid particle. By (1 .4 )  this constant is RQe-SolR. Thus 
as E -+ 0 we attain isentropic flow and, assuming continuity in the flow field so that this 
constant becomes independent of position, we arrive a t  

and 0 - 1  
De = -Dn,+#de;. 

2P 
We also need the identities 

e=;-coxJ++8I, w x l  =+(e-e)=&-e+@l  ( W E S V X V ) ,  (2 .7)  

where 2 w  is the fluid vorticity, and the term - o x I in ( 2 . 7 ~ )  corresponds to a rigid- 
body rotational motion of the fluid particle P with angular velocity w. Let Ba, 9 A  
denote the rates of change of a vector a and a tensor A in a frame fixed at P but 
rotating with an angular velocity -a with respect to the frame in which these 
derivatives are Da and DA, then 

9 a = D a + w x a ,  9 A = D A + w x A - A x w .  

By ( 2 . 7 )  and the assumption that A is symmetric we have 

9 a  = Da+(;-e+@I).a, B A  = DA+2(;-e+@).A. (2 .8)  

From (2 .3) - (2 .8)  and relations similar to (2.6) involving V. n,, and Dq,, we find that 
for Maxwellian molecules (2 .1 )  can be written succinctly as 

0 0 

1 (2 .9 )  
x = x1 + x2 = R, . zl - a p 7 , 9 ( ~ , / p )  - 7,,VX, 

q = ql+q2 = R 2 . q , - ~ p 7 2 T b 9 ( q l / p T f ) - ~ - 7 0 R T V . x l , j  

where? R, = 1-27,; ,  R, = I-(72+471-$70)&, (2 .10)  

and 70 = *T I ,  72 = #71, a = 1, p = 1 .  (2 .11)  

In  the more general theory to be given below (2 .9 )  and (2 .10)  remain true, but none of 
the relations in (2 .11 )  apply. 

time scales. and not to different orders in Knudsen number. 
f The reader should note that the subscripts in (2.10) and (2.1 1) relate to different microscopic 
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As will become apparent later, the terms in (2.9) containing 53 and V arise from 
changes in the second-order entropy (Bs,) and changes in the second-order entropy 
flux ('7. Js2). And we shall establish in 5 3 that the operators R, and R, result from fluid 
element shear over a mean free path; in fact (1.2) can be expressed 

p = p l +  X1 + o(€2) = (I - 2T1i) .PI + 0(S2) ,  (2.12) 

showing that p differs from pl  because of this effect. 

menological theory. Irreversible equations like (1. l), viz. 
Parity under reversal of molecular motions plays an important role in linear pheno- 

(+) ( < I  ( - )  (+) 

x1 = - 2pe, q1 = - K T g  ( + , positive parity; -, negative parity) 

always contain terms of opposite parity and, as explained in Woods (1975), the 
reciprocal relations ensure that all the terms in v1 have positive parity. As i t  stands in 
( 1.13) v1 appears to have negative parity, but when the constitutive relations (1 .1  ) are 
substituted into (1.13), its parity becomes positive. Now an interesting feature of (2.1) 
is that they reveal x,  and q, to have parities opposite to the right-hand sides of x1 and 
ql, which we can indicate as follows: 

the parities ascribed to p and q following from their kinetic theory (i.e. reversible) 
definitions. We infer that x2 and qa are due to reversible effects, so that, although they 
can change the entropy of a fluid element, they cannot increase the dissipation in the 
element. 

It has long been known that the Burnett equations fail when applied to shock waves 
and other situations in which c much exceeds 0-2. I n  a recent paper (Woods 1979) the 
author discusses the reason for this, and incidently as part of a check on a general 
theory for fluid dynamics for unconstrained E ,  gives a mean-free-path treatment ofthe 
equations. The value of our present study lies not in the equations obtained, but in the 
generality of the approach and the possibility of applying it to more complicated media. 
It also offers an interesting example of nonlinear constitutive equations with which 
one can check the basic equation of thermodynamics and the Clausius-Duhem 
inequality. 

3. Fluid particle distortion 
In  this section we shall use elementary mean-free-path arguments to obtain expres- 

sions for the influence of fluid particle distortion on dissipation and entropy flux. The 
distortion we are concerned with is due to the change in fluid velocity that Occurs 
during the flight of a typical molecule S from one collision to the next. We shall assume 
that S moves a distance h between collisions, a t  a speed C and so takes a time T = h/C. 
We have chosen a single molecular speed for our molecules rather than a Maxwellian 
distribution of speeds, for, provided the mean free time r and the mean free path h are 
given different values for the transport of entropy, momentum and energy, there is no 
loss in accuracy in the single-speed model, a t  least in a theory valid only O ( E ~ )  (Woods 
1979). We shall introduce three distinct microscopic time scales, r0, T ~ ,  T ~ ,  and (later) 
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two ratios a, p of time-scales, making five phenomenological parameters in all. Kinetic 
theory yields precise values for these constants once the nature of the force law between 
molecules has been specified. 

Let P(r ,  t )  and P'(r', t'), where r' = r - A&, t' = t - 7  and 8 is unit vector, be points 
in the fluid moving with fluid velocities v = v(r, t)  and v' = v(r',t'). As shown in 
figure 1, P' is displaced from P in distance and time so that an average molecule S 
moving along a unit vector k (relative to P') correctly chosen can move from a firsf 
collision at  P' to a second collision a t  P .  The microscopic scales A and r will depend on 
what property S is transporting from P' to P ;  subscripts will be added later to indicate 
these proper ties. 

FIGURE 1. Fluid particle distortion. 

If $(r, t )  is a fluid property, then 

$' = $(r - A&, t - r )  = $(r,  t )  - A&. V$ - 706 + O($),  (3.1) 

where the derivatives are evaluated at  P .  For example if C' is the average molecular 
speed a t  P' and C is its value a t  P ,  then since C cc T3, (3 .1)  gives 

During its passage from P' to P, Swill experience the body force F per unit mass acting 
on the fluid, which by Euler's equation of motion is related to the fluid acceleration, 
a = Dv, by 

1 F = a+-Vp+O(e). 
P 

Let S leave P' with a thermal velocity C 'a  + w, where w is a small anisotropic cor- 
rection due to pressure and temperature gradients and which will be assigned a value 
shortly. Relative to P, which moves with a velocity (v-v') relative to P', S arrives 
with the velocity 

u = C'R+w+v'-v+rF = C'R+w+v'-v+ra+rVp/p+O(s2), 

since variations of F with distance can add only a term O(e2) to this result. Applying 
(3.1) and noting that & = 

A A 

+ O(E) ,  we find 

+w+O(S'). (3.3) 
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A moleculeBapproaching Pfrom the opposite direction will have a velocityii relative 
to P obtained by reversing the sign of 2 in (3 .3 )  and since the centre of mass M of the 
colliding molecules must remain a t  P on the average, we may take the collision between 
S and Bas typical. However because of the V T  and Op terms in (3 .3 ) ,  M will drift from 
P unless we choose w to eliminate these terms. Doing this, and using (2 .4 )  to write 

-- - - gv. v + O(s) = - *ex+ O(E), 
DT 
2T 

we get (see (1.1) and (2.7)) 
h 

u=CK.{I -7 ( ; -ox1)}+0(€2)  ( w - i V x v ) .  

Below we shall be concerned only with the thermodynamic effects of fluid particle 
distortion and, as w corresponds to a rigid body rotation of P, the term 7 0  x I has no 
thermodynamic role for P, and can be omitted. Also note that Q = CR is the average 
speed of molecules a t  P after collision. Hence we can write 

and 
(3 .4 )  

for the relations between molecular velocities before (u) and after (a) collision a t  P. 
From (3 .4b )  we see that fluid particle shear supplies a factor ( I  + 7; ) .  to the velocities of 
colliding molecules at  P. This is because, during the passage of moleculesfrom points on 
the sphere I r’ - rl = h to P, the fluid at P has time to acquire a velocity increment that 
differs from the earlier average value over the sphere. 

Functions of the molecular speed will have each velocity vector modified in this way. 
For example (2.12) can be written 

6 E p l  = ( I + T 1 6 ) . p . ( I + 7 , 6 ) ,  

where 6 is the (isotropic) pressure tensor for collided molecules and p is the pressure 
tensor for uncollided molecules. 

Below we shall use the rule given in ( 3 . 4 b )  to obtain expressions for the ‘collided’ 
values of the first-order entropy production rate U~ and of the first-order flux J,,, 
namely 8, and J,,. We need these values because it is our claim that u and J, are given 
by the collided values of X = - (n: g + 9 .  g) /T  and < = q/T, i.e. 

A 

= c+o(s3), J, = < + 0 ( € 3 ) ,  (3 .5 )  

or since the collision operator A adds a factor (1 + O(s) ) ,  

(3.6) 
A q  TU = Ti?, - (x2 : g + q2. 9)  + 0(8), J, = J,, + $+ O(s3).  

The meaning of (3.5) is that, while p and q at P are determined by the sequence of 
earlier collisions, CT and J, depend additionally on the collisions occurring a t  P itself. 
In  other words p and q a t  P are fixed in value by the incoming molecules, whereas u 
and J, are determined by the outgoing (i.e. collided) molecules a t  P. That dissipation is 
due to the randomizing effect of collisions is well understood, and (3 .5 )  ensures that 
collisions occurring a t  the point of interest P are included in the entropy production 
and transport processes. 
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molecular speed,t we infer from (3.4b) that 
Let 7,, denote the entropy transport time, then since the flux J,, involves only one 

(3.7) J,, = Jsl.(1+70g). 
The viscous stress tensor x1 contains two molecular speeds, and the microscopic time- 
scale is that for momentum transport, hence 

(3.8) IF1 = IF,. (I + 27,;). 

The heat flux vector q, involves three molecular speeds, and guided by the form of 
(2.10b) we shall write 

* 

A 

6, = ql.  {I + (7; + 271) g}, (3.9) 

where 7; is a mean free time for energy transport. Finally V T  has two molecular speeds 
but, as the associated time scale exceeds 7,, we can define a time 7; by its appearance 
in the relation 

v^T = VT.{I+(7A+27,)&} (3.10) 

following the pattern for 4,. Below we shall find that 7;, 7; appear only in the combina- 
tion (7; + 7;), and therefore it is expedient to write 

'T2 E (7;+7;)-70, (3.11) 

which, since 70 is defined by (3.7), provides the definition of the time 7 2  for energy 
transport. 

Our theory does not yield relations between the mean free times 70, 7,  and 7 2  intro- 
duced above, which are therefore independent parameters in our approach. For 
Maxwellian molecules kinetic theory gives the relations given in (2.11). 

4. Entropy flux and production rate 
By (3.6) and (3.7), correct to O(e2) ,  

0 9 9 q o  J,= Jsl+Js2= J , , . ( I + T ~ ~ ) + A = - + T  T T OT -l.e, 

since q = q, + q, + O ( 8 ) .  For a Maxwellian gas 7,, = &,, and by (1.3) the term in (4.1) 
due to shear, viz. J,, - q2/T, can be expressed 

in agreement with a result obtained by Shavit & Zvirin (1970) from kinetic theory 
The value of 8, follows from that of (r,, given in (1.13), viz. 

TIT, = -xl: &-q, .g ,  

plus use of (3.8), (3.9) and (3.10). Thus, neglecting terms O(s3), 
A 

T8, = -6,: 6-G1.g-q1.g (8 = VT/T) 
= - IF,. {I + 27,;):; - 9,. {I + (7; + 27,))g. g - 91. {I + (7; + 27,) q. g, 

t In kinetic theory J,, P, q and RT are the averages - k(c(1n f- l)), ~ ( c c ) ,  +p(cc. C) and 
+(c .c)  respectively. 
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i.e. by (3.11) 
0 0  T6, = Tu,- 2 ~ ~ 7 5 .  e: e - (70 + 4~~ + 72) q,. & . g, 

or 

233 

P 

For a Maxwellian gas it follows from (2.11) that a = 189/32, a curiously large number 
unless its origin is exposed by mean-free-time arguments as above. 

Finally, we have from ( 3 . 6 ~ )  that the entropysource term, correct to O(e2),  isgiven by 

or 

P 
T u  = 

(4.4) 

Note from (4.1) that J, is not equal to q/T in nonlinear theory, although in the 
literature of continuum mechanics this is generally assumed to be the case. Also we 
see from (4.4) that the bilinear form for u familiar in linear theory does not hold in the 
nonlinear case, and that, unlike u,, the second-order entropy production rate, 
u2 = u-u,, can have either sign, which means that ul 2 0 does not generalize to 
u = u1 + u2 2 0, as generally supposed. 

5. The generalized Gibbs’ relation 
By (1.2) and (1.8) equation ( 1 4 ,  which has an error term O(e2), can be written 

pTDs, = pDu + po: e + O(e2); (5.1) 

we shall now generalize this fundamental equation of thermodynamics, reducing the 
error term to O(8).  On the left-hand side we shall writepTDs = pTD(s, + s2) + O($),  so 
the first step is to find an expression for s2. 

Consider a fluctuation of a small fluid particle system P, occurring on such a short 
time scale that the energy and density of P remain constant. As the latter can change 
only on the macroscopic time scale, it  follows that the fluctuation must occur in a time 
comparable to the mean free times 71, 72, . . . introduced earlier. Suppose that @ = 0 
and we can treat q, and x1 as being constant across P, although varying with time 
during the fluctuation. In this case by (1 5 )  and (4.1) Ds, and V . J, are zero during the 
fluctuation and (1 .1  1 )  reduces to 

pTDs2 = TG, = - (zl: & + 9,. g) 2 0, (5.2) 

since u2 can be ignored compared with u,. NOW suppose that P is initially in its normal 
state in the fluid, but that at t = 0 it is suddenly isolated and its gradients Vv and VT 
permitted to relax to zero. The mismatch apparent in (5.2) between the orders of the 
left- andright-hand sides of the equation requires that D = O(e-l), i.e. that the rates of 
change be rapid. 

The two terms of u1 in (5.2) will relax at  different rates. We shall consider first the 
thermal dissipation term and write (5.2) as 

(5.3) 
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where S2(t) is the value of the second-order entropy function and Q(t) ,  T G ( t )  are the 
values of the heat flux and of the temperature gradient during the relaxation process. 
The initial conditions are 

& ( O )  = 82, Q(0) = 91, G(0) = g, pTflL(0) = -Slag, (5.4) 

retaining the symbols s2, q,, g to denote values in the original steady state. The 
relaxation process will be completed a t  t = 03 ; hence 

S 2 ( ~ )  = 0,  Q ( w )  = 0,  G(w) = 0. (5.5) 

To complete the set of equations constitutive relations are needed for Q‘(t) and G’(t). 
These we shall assume take the usual form for relaxation processes, 

Q’(t) = - Q ( ~ ) / c T ~ ,  G‘(t) = - G(t)/brz,  (5.6) 

where c,  b are constants that we expect to be close to unity, since the mean free time 
(r2) for energy transport will be the appropriate time scale for the decay of q, and VT. 
Equations (5.3)-(5.6) yield 

PTS2(t) = 8B72Sl. g exp ( -  2 W 2 )  (B = 2) 
and therefore P T S 2  = 4 B T 2 q l .  g, (5.7) 

where p - 1. 
A similar argument applied to the viscous dissipation term in (5.2), with relaxation 

times chosen proportional to the momentum-transport mean free time rl, yields a 
second term for s2, which added to (5.7) gives 

pTs2 = & ~ T , X ~ :  &++B~,q,.g ( L X , ~ N  I ) .  (5.8) 

By ( 1 . 1 )  and (1.3) this formula can be written 

a % : g + y - V T . V T )  R ( y  =-A,!?). 15 r 
P T 8 71 

(5.9) 

By employing the general formula for entrcrpy given by kinetic theory (see de Groot & 
Mazur 1962, p. 182) Shavit & Zvirin (1970) have shown that for Maxwellian molecules 
(r2/r1 = g)pTsz is given by the special case 

a = l ,  p = 1 ,  (5.10) 

As indicated by (2.4) we can employ the adiabatic relations in (5.9) without 
of our formulae (5.9). 

significant error. Thus in differentiating (5.9) we may use (1.3) and (2.4) to obtain 

since u = 8RT. Hence 

pTDs, = - ~ ( d - % ) ( t l + t z ) p D u - y  P2 (Dt1+DC2), 
3P2 

0 0  R <, = ae ; e, t2 = y -  V T . V T ,  
T 

(5.11) 

where 
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play the role ofinternal co-ordinates (Woods 1975, p. 66) inour thermodynamic system. 
Another form of (5.11) that  we shall need shortly is 

P 

I - 2 / c 2 ( a g :  D ~ + ~ - V T . D V T  R , 

P T (5.12) 

Adding (5.11) to (5.1) and including two further terms on the right-hand side for a 
reason to be given shortly, we arrive a t  our generalized Gibbs’ relation: 

P2 P2 pTDs = 1 - (d - Q) (& + g,) p Du + (po + x2)  : e + q,. g - - 0 5 ,  - - DC, + O(e3).  [ z2 1 P P 
(5.13) 

The new O($) terms included are x ,  : e and q2 . g, which by the discussion a t  the end of 
Lj 2 represent reversible work and reversible heat transfer respectively. The specific 
entropy (considered as a function of state) is changed by the addition of reversible 
work, the basic work term, po:e = p V . v  = ppd(p-l)/dt being of this nature, and 
therefore the term x2:  e is properlyincluded. I n  local thermodynamics, as distinct from 
global thermodynamics, heat and work are entirely equivalent forms of energy trans- 
port and so the reversible heating in q, . g must also be included in the ‘ T ds ’ equation. 
With all these effects (internal energy, work, heat and internal co-ordinates) accounted 
for, there remain no further possibilities of O(e2) terms, permitting us to advance the 
error term in (5.13) to O(e3).  

Note that if we subtract (5.11) from (5.13) we find (cf. (5.1)) 

pTDs, = pDu+(po+x2) :e+q2 .g+O(e3) ,  (5.14) 

and if we use (1 .7 )  to  remove pDu from (5.14) we get (cf. (1.12)) 

(5.15) q $ +  
gl = p~s ,+v . - - -+00(~3) .  

T T  

Finally, subtracting (5.15) from (1 .11 )  and using (4.1), we arrive a t  

g2 = pDs, + V .  [roql. 6 / T ] .  (5.16) 

6. Derivation of Burnett’s equations 
We are now in a position to  write down an equation in which the only unknowrls are 

x2 and q,, and from which we can therefore obtain expressions for these Burnett 
additions to the classical linear theory. Eliminating (GI - crl) and v2 from (3.6), (4.3) 
and (5.16), we obtain 

P 
-pTDs,- T V .  [roql .;/TI. (6.1) 

By (1.3) and the adiabatic relations the last term can be written 

- 70 T V .  (3 6 .  q,) = -roql. V .  6-~~(6-;) q,. 6 .  V T / T  - T ~ ;  : Vq,. 
71 
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Using (2.4) to remove DT from (5.12) in favour of V .  v and substituting in (6.1), we 
arrive at our basic equation for x2 and q,, namely 

VT 
' T  - lg$DVT+ ?5TV.&]  4 7 2  

VT.&.VT-rOVql:&.  (6 .2 )  

Notice that the third term in (6 .2 )  and the part T ~ V K V T :  & of the last term can be 
expressed either as [ ] : & or as [ 1. VT, which presents us with an ambiguity in deriving 
values for x ,  and q ,  from the equation. 

We shall make use of the fact that the trace of x ,  and hence of x2, is zero to remove 
this uncertainty. If x2 contains both Vq, and VTVT, then to have zero trace it must 
also contain V .  q1 I and V T .  VTI. Now if in the argument leading to (3.4) we had 
retained the term 2[ in (2.3), the result would have been 

0 0  7 u =O.R,  R = I 1 - ~ ~ l ~ e : e + - V . q l + O ( s 2 )  
3P 

Our interest here is in the nature of the term fi . I O(e2); we see that it a t  Ieast contains 
V . ql .  Since the extension of the expansion for C' in (3.2) to terms O(e2) cannot yield an 
isotropic term of the form V T .  VT, and there exists no other source for such a term, we 
conclude that ( 6 . 3 )  does not possess a term like G. I V T .  VT O(e2) .  

Following the method of accounting for the effect of fluid particle shear based on 
(3.4), we can write p* = R.P. R for that part of p arising from shear, where ^p is the 
pressure tensor for collided molecules. Although this is not a precise estimate, it is 
sufficient to reveal that p does contain V .  q1 I but not VT.  VTI. We conclude that only 
the final term of (6.2) is to be written as [ ] : & and so included in the first right-hand 
expression. 

Equation (6.2) is ambiguous in another way. This is because 

; : ( e - Z ) . &  = 0, VT. (e -e ) .VT  = 0, (6.4) 

so by (2 .7 )  terms w x & and w x VT can be included in x, and q,  without affecting the 
right-hand side of (6 .2 ) .  This is a reflexion of the fact that rigid body rotations make 
no contribution to the entropy production rat%In (3.3) we ignored changes in the unit 
vector R between P' and P. If we replace R by its value at  P', namely fi' = R - 
~ D f i  - h k  , V f i  + O ( @ )  = R - 7DR + O(e2), and retain the w x I term, (3.4) becomes 

u = a. ( I - T&)  + TRDC - 7(D6 + w x ̂ u) + O(e2). 

The rule visible in the last term must apply to all fluxes constructed from u, and 
shows that DVT must be accompanied by w x VT and D& by w x & -& x w = 20 x &, 
& = -xl/2,u being a dyadic product of fluxes. By (2.8) and (6.2) this requires the 
addition of 

h 

o o 1 5 , ~ '  7 o R A  (e - e + @): VTVT a- ( e -  e + @ ) . e  : e + p - -  4p2 0 

P 4 P T  71 
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to (6.2), which now takes the form 
0 - 

"I 
~ a ( ~ - d ) ~ . v 8 + 2 a ( ~ 8 - ~ e . ~ )  

157 0 0 + - 2 R (VVT + d V T V T / T )  + 4( 1 + 01); . 8  : & 
4 71 

15 7, +f R [z:p(; - d) V . ~ V T  + ---(DVT -e .  V T )  
4 71 

(6.5) 

It is now correct to equate coefficients and obtain the values for z2 and q, directly. For 
the coefficients defined in (2.1) we see from (6.5) that 

15 T,, 
wl = g a ( g - d ) ,  w, = 2a, a, = - -, ~6 = d ~ 3 ,  W, = 4( 1 +a), 

4 71 

(6.6) 

The values of x and q that can be obtained from (6.5) can be written compactly in the 
forms given in (2 .9 )  and (2.10). For Maxwellian molecules (see (2.11)) the coefficients 
reduce to the Burnett values given in ( 2 . 2 ) .  There are five phenomenological con- 
stants, so various relations exist between the coefficients, the most obvious of which is 
indicated by the appearance of w3 in four places. 

7. General conclusions 
The thermodynamic derivation of Burnett's equations given above is of interest as 

much for the light it can throw on the thermodynamics of irreversible processes in 
general, as for the particular details relating to the equations themselves. Several 
general points are worth noting, for misconceptions are widespread in the literature of 
continuum mechanics, especially in that branch to which the terms 'axiomatic' or 
'rational ' may be applied. First I shall sketch the general form of the linear theory, of 
which the account in 5 1 is a special case. 

The second law of thermodynamics may be expressed as a global inequality of the 
form 

where cr is the local rate of entropy production, and the integral is taken over a fluid 
volume V ,  which must exceed a certain lower bound SX, and over a time interval t ,  - t ,  
likewise constrained. In gasdynamics the lower bound ax, is a fluid element of smallest 
dimension 1 such that the Knudsen number E = h/l  is much less than unity. The 
inequality is due to Clausius, and secures thermodynamic stability. It is statistical in 
its ba& applies only to large systems, so in (7.1) v may have either sign, provided 
only that it is non-negative on average. The value of cr is not unique, but depends on the 



238 L. C .  Woods 

size of the fluid element regarded as being a (macroscopic) ‘point’ in the flow 
pattern. 

If u is expanded in a power series in Knudsen number E, say u = u1 -k u2 + . . . , then 
continuum theory normally terminates at  ul) a choice that by (7.1) imposes a lower 
bound on the size of the fluid element dx. For ul one can find a non-negative bilinear 
form 

where J a  are the processes (thermodynamic forces) and X ,  the affinities (fluxes). The 
inequality u1 2 0 is usually called the Clausius-Duhem inequality; it  is a local form of 
the second law of thermodynamics. 

a; = 2, J,X,, u1 2 0, (7.2) 
a 

From (7.2) can be inferred relations of the type 

4 = ZLapXj ,  L a p  = T a T p L / a ’  (7.3) 
B 

where va, vB are the (molecular) motion reversed parities of X,, X, .  As made clear by 
Woods (1975, chapter 7), the reciprocal relations (7.3 b )  are a direct consequence of the 
irreversibility involved in ul. Finally, involved in the derivation of (7.2) there is a Gibbs 
relation of the type 

The question we wish to answer is ‘how much of this theory also holds for nonlinear 
irreversible processes? ’ The answer is ‘none, save the global inequality (7.1)’. 

First consider (7.2).  The bilinear form is certainly not preserved in the nonlinear 
theory (cf. (1.13) and (4.4)))  for both the J, and X ,  are changed. Also the local inequality 
(7.2 b )  cannot be generalized to u 2 0,  for the second term u2 may have either sign, and 
it is not difficult to see from (4.4) and (6.2) that-especially near boundaries-u, could 
dominate u1 via second-order derivatives in T and v, despite its having an additional 
factor E. To make the nonlinear terms in the constitutive equations become important, 
we have, in effect, reduced the size of the fluid particle to such an extent that it becomes 
a small thermodynamic system, subject to fluctuations that are not bound by the 
second-law inequality. Of course we would expect u 2 0 to be true in most parts of the 
fluid most of the time, but contrary to a widely accepted axiom of rational continuum 
mechanics (Coleman & No11 1963; Truesdell 19693 Eringen 1975) it is not true in general. 

In  the axiomatic thermodynamics of Coleman & No11 (1 963), the authors claim that 
for (7.1) to hold it is necessary and sufficient for u 2 0 in V ,  but ‘necessity’ here is 
obviously false, unless the physics arising from the granular nature of matter is 
violated by imposing ‘suitable smoothness assumptions. ’ Coleman (1964) in fact 
proves that the condition u 2 0 (which he calls the second law) holds if and only if 
V T  does not appear in the functional for entropy, but concludes wrongly that this must 
mean that s is independent of CT. By (5.9),  which shows that s does dependon V T ,  and 
Coleman’s theorem we deduce that u 2 0 is not true in general, but fortunately this 
leaves the second law (7.1) intact. 

It is not correct to generalize ( 7 . 3 ~ )  to read J, = c $ ~ ( X ~ , X ~ ,  ...) for Burnett’s 
equations make it clear that new affinities, not contained in the linear theory, appear 
a t  the second order. Nor is the entropy production rate u any guide as to what these 
new affinities might be (e.g. see (4.4)).  One cannot rewrite (7.3b) in the form 

T d s ,  = dU+pdp-l+ .... (7.4) 
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and then claim that,, when applied to the nonlinear theory, this correctly generalizes 
the reciprocal relations (e.g. as in Eringen 1975; Edelen 1974). In  fact had a generalized 
‘ Onsager relation ’ of this type been valid, we would have had no difficulty in allocating 
the penultimate term in (6.2) between zz and q,, with a result quite different from that 
given in (6.5). The physical origin of the reciprocal relations lies in irreversibility, 
which is an attribute of gl, but not of g1 + IT,. 

That the Gibbs relation (7.4) must be changed from the form it has in linear theory 
by the addition of further terms is well known, and reflects the fact that the extension 
of state space required by the nonlinear theory results in a reduction of the entropy. 
But it is essential to extend the relation in such a way as to secure thermodynamic 
stability, s - so Q 0 or equivalently ds, 2 ds, a constraint that appears to be ignored in 
axiomatic continuum mechanics. For example Green & Naghdi (1977) in pursuit of a 
finite, non-zero speed for second sound a t  room temperatures, postulated that 
s = so - aT-l dTldt for heat conduction in a rigid solid, which material is thus unstable 
whatever the sign of a. They compound this error by writing u = uo - c dT/dt for the 
internal energy, i t  being classical that stability requires u 2 uo. In  any case, unlike 
entropy, internal energy is a clearly defined physical property (although parts of it 
may be ‘frozen’ in certain circumstances), independent of the precision with which 
state space is delineated; in the Burnett theory u = uo. 

Green & Naghdi’s main aim was to replace the Clausius-Duhem inequality by 
separate inequalities for work and heat dissipation. Thus for example instead of (1.13) 
they would have the two constraints 

( A )  -z1:6 0, ( B )  -ql .g  2 0 (aT/at = 0, V =  0), (7.5) 

the second of which they restrict to steady temperature fields and zero fluid velocities. 
For materials with central symmetry (e.g. see Woods 1975, chapter 8) (1.13) does 
divide into ( A )  and (B) ,  save that the constraints added to B are absent, but Green & 
Naghdi have not specifically confined their attention to such materials. And as they 
later apply the theory to mixtures (Green & Naghdi 1978), they include the case when 
the friction between diffusing components contributes to the irreversible work. 

To demonstrate that the general principle involved in (7.5) is wrong, we need only 
to cite the phenomenon of thermal diffusion, in which a flow of matter is caused by a 
temperature gradient. In  this case the dissipation is given by (de Groot & Mazur 1962, 

P. 26) 

Tg1 = -zl: VV-q,.g+Cpi(Vi-V).Si 2 0 (Si F,-TV(g,/T)), (7.6) 
i 

where vi, v are the i th component and barycentric velocities, Fi is the body force on 
the ith component and pi, gi are the density and specific Gibbs functions for the ith 
component. The third right-hand term is the rate a t  which work is dissipated due 
to friction between species. The Green & Naghdi (1978) theory of mixtures (presented 
in a different notation) must necessarily encompass this case. Accepting their principle 
of separating the dissipated work, we have the inequality 

-zl: vv+~p,(vi-v) .3?i  2 0, (7.7) 
i 
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plus (7.5b). If we now assume that the mixture has central symmetry, the vectorial 
and tensorial terms may be separated giving 

instead of 

x pi(vi - v) .si 2 0, 
i 

which follows from (7.6). Now while (7.5b) and (7.8) lead to unconnected linear con- 
stitutive relations of the form 

q = -KVT (vi = 0); pi(vi-v) = x&Si, (7.10) 
i 

where K and the principal minors of are positive parameters, (7.9) yields 

q = - K V T + ~ , O ~ ~ ~ . ;  pi(vi-v) = uiVT+T;&T.. (7.11) 
i 3 

In  other words the Green & Naghdi theory suppresses thermal diffusion altogether. 

stitutive assumption of the form 
It might be thought that ( 7 . 1 0 ~ )  does not prevent the adoption of a separate con- 

(7.12) 

but, ifwe adhere to the Green & Naghdi hypothesis of non-negative dissipated work, 
it is easily shown that bj in (7.12) must be zero. The work in question (ignoring other 
kinds for simplicity) is 

cpi(vi-v).*, 
i 

and, if this is non-negative, it follows from (7.11 b) that ui = 0. In  this case (7.11 b) and 
(7 .12 )  yield 

pi(vi-v) = C&.9& q = - K V T + C ~ ~ S ~  (a, = CbiPii). (7.13) 

Now the reciprocal relations require that the coefficient of Sj in (7.13b) be equal to 
( -  T )  times the coefficient of VT in ( 7 . 1 3 ~ ) .  Thus ai = 0 and, with + 0, we have 
bi = 0. 

That heat and work transfers are really inseparable for fluid particles is also very 
evident in Burnett’s equations (2.9). 

i i i 

The work described above has been profitably discussed with Dr H. Troughton, 
recently of the Mathematical Institute, Oxford. 

Appendix A. Use of multiple time scales 
The theory presented in 9 I and 9 5 may seem clearer to the reader if we adopt 

multiple time scales and expand the operator D as a Knudsen (or Enskog) series [cf. 
5 7.14 of Chapman & Cowling 19701 

D = D,+D,+D,+ ... (D, = O(€,)) (A 1) 
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and then equate terms of the same order in 6, regarding the resulting equations as 
exact. Thus (1.5) becomes 

TDoso = D,~+pDop-l, TD1so = D,u+pD,p-', (A21 

TD2s0 = D2u+pD2p-'+15,:g+q2.g, ..., 
where in the second-order relation we have added the reversible work and heat transfers 
in accord with the discussion following (5.13). Equations (1 .7)  and (1.8) yield (with 
$ zero) 

pD,u +ppD,p-l= 0, pD,u +pPD,p-l+ : + V .  ql = 0, ] (A3) 
pD2u +ppD,p-l+ x2 : e + V. q2 = 0, 

then from (1.9) and (1 .11)  

pTDlso+TV. J,, = Ta, = - Z l : i - q l . g ,  =ql /T,  

Ta2 = pT(D2so + D0s2) + V . Js8. 

Equation (2.3) gives 

and in (2.9) 9 should be go = Do + o x . 
From ( A ~ c ) ,  (A3c)  and (A4c)  we find (5.16) in the form 

crz = PDOS2 + v + (J,, - q2/T)- (A 5) 

Finallythe generalized Gibbs' relation is obtained by adding TDos2 to thesumof (A2): 

which is the same as (5.13). 
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